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Abstract

Prior empirical research on the theoretically proposed interaction between the
quantity and the quality of children builds on exogenous variation in family size
due to twin births and focuses on human capital outcomes. The typical finding
can be described as a statistically nonsignificant two-stage least squares (2SLS) esti-
mate, with substantial standard errors. We regard these conclusions of no empirical
support for the quantity-quality trade-off as premature and, therefore, extend the
empirical approach in two ways. First, we add health as an additional outcome di-
mension. Second, we apply a semi-parametric Bayesian IV approach for econometric
inference. Our estimation results substantiate the finding of a zero effect: we provide
estimates with an increased precision by a factor of approximately twenty-three, for
a broader set of outcomes.
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1 Introduction

Motivated by the theoretically proposed interaction between the quantity and quality of

children (Becker and Lewis, 1973; Willis, 1973; Becker and Tomes, 1976), economic schol-

ars have an ongoing interest in the empirical effect of family size on child outcomes. While

naïve estimations consistently show that children’s human capital outcomes are negatively

affected by a greater family size, more recent instrumental variable (IV) approaches rarely

find statistically significant point estimates and tend to reject the quantity-quality trade-

off.1

We argue that the conclusions drawn from these recent IV approaches may be prema-

ture. First, the empirical studies have primarily examined educational and labor market

outcomes. Although we agree that these two dimensions are important, the quantity-

quality trade-off may still materialize in other domains. For example, we consider health

to be an important dimension.2

Second, it is debatable whether existing IV estimates on human capital outcomes are

sufficiently precise to allow a conclusion of zero effects. The standard approach is based

on two-stage least squares (2SLS) estimates that exploit exogenous variations in family

size due to twin births and preferences for a mixed sibling-sex composition. A key concern

with 2SLS, even with very large sample sizes, is whether the estimates are precise enough

to be informative. For instance, Angrist et al. (2010) conducted a study based on Israeli

data using the twin instrument and found an estimated effect of family size on college

attendance of plus 1.7 percentage points, with a standard error of 5.2. This effect is clearly

statistically nonsignificant. However, the corresponding 95 percent confidence interval is

large, ranging from minus 8.5 to plus 11.9. We do not believe this estimate justifies the

strong conclusion that family size has no impact on child outcomes.3

This study contributes to the existing body of literature along two dimensions. First,

we use administrative data sources from Austria to extend the conventional human capital

1The evidence from developed countries comprises educational outcomes and IQ scores in Norway
(Black et al., 2005, 2010), educational outcomes in the USA (Cáceres-Delpiano, 2006), educational, labor
market, and family outcomes in Israel (Angrist et al., 2010), and educational and labor market outcomes
in Sweden (Åslund and Grönqvist, 2010). The estimation results from these studies are summarized in
Table 1. For a discussion of estimates from low- and medium-income countries see, for instance, Quian
(2013).

2We are only aware of two design-based papers (twin instrument) based on data from developed
countries. Hatton and Martin (2010) find a negative effect on the height of British children born in
the interwar period, but no effect on their body mass index. Then, Lundborg et al. (2013) identify a
positive effect on both height and a global health measure using Swedish data that covers more recent
birth cohorts. Details are provided in Table 1.

3Most recently, Bagger et al. (2013) presented a theoretical extension of the quantity-quality model
that allows for the differential treatment of children by birth order. In their empirical test, using the
twin instrument in a 2SLS framework, they find a statistically significant negative effect of family size
on children’s average educational outcomes. In other studies, Mogstad and Wiswall (2012) and Brinch
et al. (2012) discuss the functional form assumption employed by previous empirical studies and provide
evidence of non-linear effects. However, this aspect is less relevant in our context as we use data from a
low-fertility environment.
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outcomes to include health outcomes. In particular, we complement college attendance,

employment, occupation, and wages with health-related outcome variables such as the

number of days of hospitalization and expenditure on medication and outpatient medical

attendance. Second, to tackle the problem of the large standard errors of the 2SLS

approach, we apply the semi-parametric Bayesian IV approach advocated by Conley et al.

(2008). The results of this estimation method are substantially more precise than 2SLS

results. To demonstrate this, for each outcome, we compare the relative performance

of the conventional IV approach (2SLS) to that of the standard and semi-parametric

Bayesian IV approaches.

Theoretical considerations The quantity-quality model of children assumes egalitarian

parents who aim to invest in all their children equally. The interaction of child quality and

child quantity in the budget constraint means that an exogenous increase in the quantity

of children increases the marginal cost of investing in their quality. Consequently, children

from larger families are predicted to receive less parental investment and to have worse

outcomes. In the case of human capital outcomes, there is an obvious causal chain running

from pecuniary and non-pecuniary investment, via educational outcomes, to labor market

performance. In terms of health outcomes, multiple channels are possible. First, larger

families may not be able to afford the same quality of food and healthcare services.

Equivalently, it may be difficult for them to find the time for preventive and/or curative

doctor visits. Alternatively, time constraints could lead to deficiencies in children’s health

education. Thus, children from larger families may be more prone to an unhealthy lifestyle

than their counterparts from smaller families.

Certainly, the simple and elegant quantity-quality model of children exposes an im-

portant mechanism, which applies in either outcome domain. However, it disregards

other potentially important channels. In particular, an additional sibling might affect a

firstborn beyond the negative reinforcing mechanism between quantity and quality. Put

differently, an additional sibling may not only be a rival, but also an important resource.

Developmental psychology stresses that caring for younger siblings may yield some devel-

opmental benefits for older siblings. Family psychology literature discusses how siblings

can provide both financial and emotional support (Pollet and Hoben, 2011). Concerning

health, the social interaction channel is a well-known subject in medical literature. The

so-called hygiene hypothesis states that a lack of early childhood exposure to infectious

agents, particular microorganisms and parasites, may increase a person’s susceptibility

to allergic disorders and autoimmune diseases by suppressing the natural development

of the immune system (see, for instance, Strachan, 1989, 2000). Since a larger family

size implies a greater exposure to pathogens, parasites, bacteria, and viruses, the hygiene

hypothesis predicts that family size has a positive influence on the health of children.

However, medical and epidemiological literature on this subject is inconclusive, not least
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because it disregards the endogeneity of family size.4

Bayesian inference Unlike the conventional approach, the Bayesian paradigm assumes

distributions for observed variables as well as parameters. In particular, a Bayesian infer-

ence requires formulating the conditional distribution of the data, given model parameters

(i.e., the likelihood function), and a prior distribution for the model parameters them-

selves. For Bayesian IV models, two different approaches have been suggested to derive

the conditional distribution of the data from the joint distribution of the outcome and

endogenous variables. In the standard Bayesian IV estimation, the likelihood function

is derived by assuming a bivariate normal distribution for the outcome and endogenous

variables, as described in Rossi et al. (2005). In contrast, the semi-parametric Bayesian

approaches aim to avoid rigid choices of data distributions by allowing a wider class of pos-

sible likelihood functions. This makes them well-suited and flexible alternatives for data

that violate the normal distribution assumptions for outcome and endogenous variables.5

The idea behind the semi-parametric approach is that any distribution can be repre-

sented by mixing a sufficient number of normal distributions. If only a single normal dis-

tribution is necessary, then the standard Bayesian approach is the optimal choice. Mixing

several normal distribution components can represent more complex scenarios. In other

words, the less similar a distribution is to the normal distribution, the greater the number

of mixture components it requires. In such a non-normal case, we cannot rely on results

from methods that assume normality, such as the standard Bayesian IV or the typical

confidence interval estimation of conventional IV. Our human capital outcomes and, in

particular, our health outcomes represent complex distributions that require many compo-

nents. Therefore, we have more confidence in the findings of a semi-parametric Bayesian

approach than we do in those of the standard Bayesian or conventional IV approaches.

Conley et al. (2008) compare their semi-parametric Bayesian IV approach to the stan-

dard Bayesian and conventional IV methods and find it to be more efficient for non-normal

errors. In particular, they compare the semi-parametric Bayesian IV approach to point

4A series of medical studies in several European countries report a negative association between family
size and allergic diseases. These studies postulate that family size is a protective factor for allergies (Von
Mutius et al., 1994; Jarvis et al., 1997; Strachan et al., 1997; Forastiere et al., 1997; Svanes et al., 1999).
Wickens et al. (1999) take a more critical view of the impact of family size on the increase in the prevalence
of asthma and hay fever. The authors show that the relative change in family size in England/Wales
and in New Zealand between 1961 and 1991 did not appear to explain much of the increase in asthma
and hay fever prevalence. In reviewing 53 different studies, Karmaus and Botezan (2002) support the
“protective effect” of a greater number of siblings on the risk of atopic eczema, asthma and wheezing, hay
fever, and allergic sensitization. However, the authors point out that this result is based exclusively on
data provided by epidemiological associations and that the question of causal factors has not yet been
answered.

5Books by Zellner (1971) and Rossi et al. (2005) review and present Bayesian statistical inference in
econometrics and marketing, including the Bayesian IV approach. Kleibergen and Zivot (2003) compare
the Bayesian and conventional approaches to inferring IV models. Hoogerheide et al. (2007), Lopes and
Polson (2014), and Zellner et al. (2012) discuss using Bayesian models for the IV problem and choosing
the prior distributions for the parameters. Chamberlain and Imbens (2003) and Conley et al. (2008)
advocate semi-parametric approaches to Bayesian IV estimation.

4



and interval estimators from ordinary least squares (OLS), 2SLS, and two variants of

limited information maximum likelihood estimation (LIML) approaches, which are better

suited estimators in case of weak or many instruments. Using artificial and real data,

they claim that for “both weak and strong instruments, our procedure produces credibility

regions that are much smaller than competing classical procedures, particularly in the case

of non-normal errors.”

Preview of results In line with existing evidence on human capital outcomes, our

2SLS point estimates are relatively large, but statistically nonsignificant. In contrast,

our semi-parametric Bayesian IV estimation provides precisely estimated zero effects.

For instance, the estimated effect of family size on college attendance is 0.02 percentage

points, with a corresponding 95 percent confidence interval ranging from minus 0.02 to

0.10. This confidence interval is about twenty-three times smaller than the equivalent

confidence interval from the 2SLS estimation. For health outcomes, we also observe

comparably better performance by the semi-parametric Bayesian IV estimate and do not

find convincing evidence for an effect of family size. In summary, based on our empirical

analysis, we conclude that there is no significant quantity-quality trade-off of children.

The remainder of this paper is organized as follows. Section 2 briefly outlines the

conventional IV approach, and then presents both Bayesian IV approaches in more detail.

Section 3 describes the data. Section 4 compares the empirical estimates based on the

competing estimation methods. Finally, Section 5 concludes the paper.

2 Estimation Methods

2.1 Conventional Instrumental Variable Approach

Following the standard approach, we employ two complementary sources of exogenous

variation in family size. The first source is twin births at the second live birth (Rosenzweig

and Wolpin, 1980). The second source is same-sex sibships (Angrist and Evans, 1998),

which exploits the widely observed preference among parents to have children of mixed sex.

The first identification strategy (twin births) informs us about the effect of an unexpected

third child, while the second (same-sex sibship) provides an estimate of the effect of an

expected and desired third child. Both identification strategies are well-established natural

experiments for studying the effect of family size on children’s human capital outcomes.

They translate into the following two first-stage estimations,

famsize = αT2 + βT2 · twin2 + ΓT2 ·X+ uT2, (1)

famsize = αSS + βSS · same sex+ ΓSS ·X+ uSS, (2)
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where famsize represents the completed family size (i.e., number of children). The

respective estimation output (based on least squares) is summarized in Table 2.6 The

twin birth increases the family size for all families (with a twin birth at the second

birth) who would have stopped fertility after the second live birth in the counterfactual

situation of a single birth.7 As can be seen in specification (1), the effect of a twin birth

on family size is quite substantial, and amounts to about plus 0.78 children. On the other

hand, the same-sex sibship only increases the family size for some families, namely those

families (with a same-sex sibship) who decide, based on a preference for mixed siblings,

to have a third child and who would have stopped fertility after the second live birth in

the counterfactual situation of a mixed-sex sibship. Thus, this first stage relationship is

comparably smaller, and amounts to only plus 0.06 children (see column (2)). Notably,

compared to other papers, both first-stage relationships are quite large. This reflects the

fact that Austrians have, on average, few children. For this reason, it is not worthwhile

to use twin births at the third birth to examine the effect of a greater family size.8

An alternative specification of the same-sex sibship first-stage estimation allows for

a different impact of female (girl1, 2) and male (boy1, 2) same-sex sibships. This spec-

ification (column (3)) reveals that the preference for a mixed sibling-sex composition is

stronger in the case of two firstborn girls than it is if the two children are boys. In the

former case, family size increases by 0.08 children, while in the latter case, it only in-

creases by 0.04 children. This suggests that—apart from the general preference for mixed

siblings—there is some prevalence of a preference for boys (Dahl and Moretti, 2008) among

Austrian parents during that period. In our analysis below, we will employ specification

(3) (instead of (2)) to exploit this additional variation. The lower panel of Table 2 displays

the F-statistics on the excluded IV(s). It turns out that all our first-stage relationships

are strong and that we can abstract from weak-IV concerns (Staiger and Stock, 1997) in

the following discussion.9

For the twin-IV, we need to assume that the occurrence of twins is an exogenous event

that is uncorrelated with unobserved parental characteristics. For the same-sex sibship

IV, we have to make an equivalent assumption on the (order of) sex of the children.

How plausible are these identifying assumptions? There are two known determinants of

twin births. A higher maternal age and an in vitro fertilization treatment both increase

the likelihood of multiple births. First, we control for maternal age. Second, we use

6Details on data sources will be provided below.
7This implies that there are no never-takers with this IV and the local average treatment effect (LATE)

is equal to the average effect on the non-treated (ATC). See Angrist et al. (2010) for a more detailed
discussion on this topic.

8The share of Austrian women with completed parity of four or more has declined since the 1935 birth
cohort, and amounts to about 5 percent for the 1965 cohort (Prskawetz et al., 2008).

9Depending on the outcome to be considered, the estimation samples vary. However, in each case,
the first-stage relationships are comparable; the detailed first-stage estimation output for each sample is
available upon request.
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the occurrence of twins at the second birth, and assume that in vitro fertilization is less

common when a woman has already given birth to a child. Furthermore, second births

are predominantly from a period before in vitro fertilization treatment was customary.

The upper graph in Figure 1 shows that, while the incidence of twin births has increased

sharply in recent years (especially at parity one), a constant rate was maintained until the

end of the 1980s. The bottom graph shows that in about 90 percent of our observations,

second births took place before 1990. The child’s sex is typically assumed to be an

outcome of a complete random biological process.10 Thus, it also seems plausible to

assume that a child’s sex is not (or is, but only marginally) correlated with unobserved

family characteristics.

At the second stage of IV estimations, we use the two sources of exogenous varia-

tion in completed family size to identify the effect on different outcomes of the firstborn

child. In particular, we estimate second-stage equations, where the outcome variable,

child outcome, is either an educational, labor market, or health outcome measured in

young adulthood,

child outcome = αIV + βIV · ̂famsizeIV + ΓIV ·X+ uIV , (3)

and ̂famsizeIV is the completed family size instrumented by one of the two alternative

strategies (indexed by IV ) explained above. In our baseline specification, we include a

parsimonious set of covariates (denoted by X) that comprises binary indicators of the

firstborn’s year of birth and mother’s age at the first and second birth. The latter two

variables capture the birth spacing.

2.2 Bayesian Instrumental Variable Approaches

Unlike the conventional approach, the Bayesian paradigm assumes that the parameters

are random variables in addition to random observations. Consequently, distributions are

specified for all random variables contained in the model and, by definition, the Bayesian

approach relies far more on distributional assumptions than do conventional approaches,

which typically include implicit rigid distributional assumptions (e.g., for estimating confi-

dence intervals). More specifically, Bayesian inference requires formulating the conditional

distribution of the data, given model parameters (i.e., the likelihood function), and a prior

10The so-called Trivers-Willard Hypothesis states that the population sex ratio responds to parental
conditions (Trivers and Willard, 1973). It is predicted that mothers in good condition are expected to
have more sons, while mothers in poor condition should have more daughters. The precise mechanism
behind how mothers (or their reproductive system) favor either female or male offspring, depending
on their condition, is still debated. As prenatal mechanisms, researchers discuss the prevention of the
implantation of embryos of certain sex, or the increased likelihood of certain fetal loss. Empirical evidence
is available that women in poor health (or who live in less favorable conditions) are less likely to have
male offspring (Almond and Edlund, 2007; Catalano et al., 2005; Hansen et al., 1999). However, these
effects are not quantitatively important to our results.
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distribution for the model parameters themselves. This constitutes both a weakness and a

strength of Bayesian modeling. On the one hand, the prior distributions of the model pa-

rameters are the main way of introducing information into the model that is not based on

the data, such as the findings of comparable studies. Thus, choosing these distributions

requires care. Typically, researchers prefer weakly informative prior distributions that

do not conflict with the information provided by the data. However, the choice of such

priors that are not based on real previous observations is, to a certain degree, debatable.

On the other hand, Bayesian modeling allows for more flexibility when formulating the

distribution of the data than do conventional approaches.

For Bayesian IV models, the typical approach concerning the prior distribution (as

presented by Rossi et al. (2005)) is based on conjugate prior distributions, which preserve

the structure of the distribution and allow simple parameter updates.11 With regard to

the likelihood function, two approaches have been suggested for Bayesian IV modeling,

which we explain in detail below.

2.2.1 Standard Bayesian IV Approach

The standard Bayesian linear regression approach (Zellner, 1971; Rossi et al., 2005;

Robert, 2001), equivalent to classical OLS, is based on the second-stage equation, ex-

plicitly assuming a normal distribution for the error terms,

child outcome ∼ N(α + β · famsize+ Γ ·X, σ2

u). (4)

The standard Bayesian approach towards inferring IV models can be seen as an extension

of the standard Bayesian linear regression model, which explicitly assumes a bivariate

normal distribution with a covariance matrix, Cov(uT2, uIV ) = Σ for the error terms:

(

famsize

child outcome

)

=

(

βT2 · twin2 + ΓT2 ·X

βIV · famsizeIV + ΓIV ·X

)

+

(

uT2

uIV

)

, (5)

(

uT2

uIV

)

∼ N

((

αT2

αIV

)

,Σ

)

. (6)

11Kleibergen and Zivot (2003) compare classical and Bayesian estimators with such “non-informative”
priors for IV models, focusing in particular on the specification of Bayesian models (i.e., likelihood and
priors) that have similar properties to the 2SLS and LIML estimators. They find similarities between
the choice of a flat prior over the parameters and the 2SLS estimator. They discuss the properties
and advantages and disadvantages of the non-Bayesian and the Bayesian estimator in detail. Choosing a
Jeffrey’s prior, which provides invariance with respect to parameter transformations, leads to the Bayesian
equivalent of the LIML estimator. They find that Bayesian approaches are less sensitive to the inclusion
of superfluous instruments, arguing that it pays to be aware of “implicitly assumed priors” in classical
procedures.
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A similar expression arises for the same sex IV. Following Conley et al. (2008), we included

the intercepts αT2, αSS, αIV in all equations as the prior mean of the error terms to illus-

trate the relation between the standard and the semi-parametric Bayesian IV approach

described below.

The prior distributions of the coefficients are joint normal distributions for all coeffi-

cient parameters,







αT2

βT2

ΓT2






∼ N(µT2

0
,ΣT2

0
), (7)

with a similar prior, N(µSS
0
,ΣSS

0
), for the coefficients (αSS, βSS,ΓSS) of the same sex IV.

Analogously, the normal prior distribution, N(µIV
0
,ΣIV

0
), is assumed for the coefficients

(αIV , βIV ,ΓIV ). Following Rossi et al. (2005), a conjugate inverse Wishart distribution12

is assumed for the covariance matrix, Σ,

Σ ∼ IW (s0, S0). (8)

We refer to this model as the standard Bayesian IV approach.

2.2.2 Semi-Parametric Bayesian IV Approach

The assumption of normally distributed errors is not realistic for most applied data set-

tings. This also applies to our outcome variables, most of which are either binary or

highly skewed (including excess zeroes), and our endogenous variables, which have small

counts. Therefore, we suggest a semi-parametric approach based on a flexible Bayesian

semi-parametric error model that is able to deal with this departure from normality. In

particular, we follow Conley et al. (2008), who suggest a semi-parametric approach based

on an infinite mixture of bivariate normal distributions as the error model:
(

uT2

uIV

)

,

(

uSS

uIV

)

∼
∞
∑

k=1

πkN(µk,Σk). (9)

As in (6), the errors are not centered around zero, which enables us to identify all pa-

rameters of the infinite mixture (i.e., the weights π1, π2, . . ., which are normalized as
∑∞

k=1
πk = 1), as well as the component-specific means and covariance matrices, µk and

Σk, for each component.

12The inverse Wishart distribution is defined as having the density

p(Σ) =
|S0|

ν/2

2νp/2Γp(ν/2)
|Σ|

−(ν+p+1)/2
exp (−1/2tr(S0Σ

−1)).
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In the special case of this model, only a single component has a corresponding weight

equal to one, while all other components have zero weights. This corresponds to the

standard Bayesian IV model, described in equation (6), with the mean, µ, of the single

non-empty component being equal to the intercept (αT2, αIV ). More generally, a mixture

of several components with non-zero weights could be regarded as a model in which the

“overall” mean, µ =
∑∞

k=1
πkµk, of the error term in equation (9) is different from 0 and

corresponds to a random intercept.

Hence, instead of specifying a prior for the intercepts (αT2, αIV ), as in the standard

Bayesian IV approach, a joint prior distribution has to be imposed on the countably infi-

nite sequence of mixture component parameters, µk,Σk, and their corresponding weight,

πk, for all k = 1, 2, . . .. A popular approach for specifying such a prior distribution is based

on the notation of a discrete random probability measure, with the Dirichlet process prior

introduced by Ferguson (1973) being an important special case. Under the Dirichlet pro-

cess prior, the error distribution is represented as a countably infinite mixture, as in (9),

where πk are random weights, such that
∑∞

k=1
πk = 1. However, the components param-

eters, θk = (µk,Σk) ∼ G0, are independent draws from an underlying parametric family

of distributions, G0. The best way to understand the notion of a Dirichlet process prior

is via the stick-breaking representation of the random weights, as introduced by Sethu-

raman (1994). This representation defines the infinite sequence (π1, π2, . . .) of random

weights recursively from an infinite sequence of pieces of sticks (v1, v2, . . .). These sticks

are independent realizations from a beta distribution (i.e., vk ∼ B (1, ω)) with tightness

parameter ω. The idea behind “stickbreaking” is that we start with a stick of length 1,

which is the sum of the weights. Then, we break the stick at length v1, obtaining the

first piece of stick, v1, which defines the first weight, π1 = v1. This leaves the rest of the

stick with the tail probability of 1 − π1 for all remaining components. The second piece

of stick is broken off from this remaining piece at length v2, defining the second weight

as π2 = v2(1− v1). Once again, we are left with a piece of the stick, in this case with the

tail probability of (1− v1)(1− v2) for all remaining components. This leads to the third

weight, π3 = v3(1 − v1)(1 − v2). As we continue to break the stick, weight πk is defined

as a piece with length vk, and is taken from the remaining piece from the previous step

with a tail probability of
∏k−1

j=1
(1− vj) = 1−

∑k−1

j=1
πj:

πk = vk

k−1
∏

j=1

(1− vj). (10)

This can be interpreted as the relative length of the k-th broken piece, vk, broken off

from the piece of stick remaining after breaking off v1 to vk−1.

The distribution G0, from which each θk = (µk,Σk) is drawn, is the so-called base

measure, and is chosen as a conditionally conjugate prior for a model with a single com-

10



ponent. For the IV model defined in (5), this leads to choosing the following prior as a

base measure for each component parameter, θk = (µk,Σk):

Σk ∼ IW (ν, V ), µk|Σk ∼ N(µ̄, a−1Σk). (11)

Here the choice of prior parameters ν and V influences the prior amount of shrinkage

toward the case of no endogeneity.

Although the semi-parametric Bayesian IV model assumes, a priori, a mixture of

infinitely many components, for a finite number of realizations from this model, the errors

are classified only into finitely many non-empty mixture components. Each of these

components is characterized by a distinct value of (µk,Σk), for k = 1, . . . , I∗, where I∗ is

the number of non-empty, distinct mixture components.

The prior number of non-empty, distinct mixture components, I∗, is random by con-

struction and strongly depends on the choice of the tightness parameter, ω. In this respect,

it is useful to consider representation (10), which shows that the kth piece of stick vk de-

fines the fraction of the tail probability,
∏k−1

j=1
(1 − vj), assigned to the kth component.

Since the expected stick length is equal to E(vk) = 1/(1 + ω), choosing a small value for

ω leads, a priori, to fewer components, I∗, and vice versa. To reduce this sensitivity to

the choice of ω, a hierarchical prior is added for p(ω).

Finally, we assume normal prior distributions for the remaining coefficients, as in

equation (7). In other words:

(

βT2

ΓT2

)

∼ N(µT2

0
,ΣT2

0
). (12)

Once again, the priors for (βSS,ΓSS) and (βIV ,ΓIV ) are defined analogously. We refer to

this model as the semi-parametric Bayesian IV approach.

2.2.3 Bayesian Inference

For both Bayesian IV approaches, we use Markov Chain Monte Carlo (MCMC) methods

for Bayesian posterior inference. Since the standard Bayesian IV model is estimated under

a bivariate normal distribution for the error vector (uT2, uIV ), a three-block Gibbs sampler

can be applied for inference (see Rossi et al. (2005) and Hoogerheide et al. (2007) for more

information). Based on the priors defined in (7) and (8), a sampler is applied that updates

the coefficient parameters of the first-stage equations, the second-stage equations, and the

covariance matrix of the errors.

Similarly, the Bayesian posterior inference for the semi-parametric Bayesian IV model

is carried out using an MCMC estimation (see Conley et al. (2008) for details). In con-

trast to the previous method, the coefficients (βT2,ΓT2), (βSS,ΓSS), and (βIV ,ΓIV ) are
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sampled jointly in different blocks, conditional on all remaining parameters. The mixture

components are updated in a further block, using the Polya urn representation to draw

the corresponding component-specific parameter, θi, for each observation i, conditional

on the parameters of all remaining observations (e.g., see (Escobar and West, 1998)). The

Polya urn scheme is an alternative representation to the Dirichlet process prior. For each

observation i, this scheme provides the probability that θi is equal to one of the I∗ dis-

tinct parameters of the remaining observations, as well as the probability that θi belongs

to a new, empty component, in which case θi is sampled from the base measure, G0.

This algorithm automatically increases or decreases the number of non-empty, distinct

components, I∗, during MCMC sampling. Hence, a posteriori, the number of non-empty,

distinct mixture components, I∗, in (9) is adjusted to the number of mixture components

required to best model the non-normality of the data.

The MCMC estimation for both Bayesian IV approaches is implemented in the R

package, bayesm (see Rossi (2012)), designed for the statistical software environment,

R (R Core Team, 2013). The large calculation times of the Dirichlet Process sampler

prohibits an extensive sensitivity analysis of the prior settings. Therefore, we applied

the well-defined default priors of bayesm. However, we encountered problems with the

Dirichlet process sampler implemented in bayesm, as the algorithm was not able to manage

the large data sets we analyze in this study. This obstacle prohibited a straightforward

application of the given software. Thus, we developed an alternative approach by splitting

the various data sets into a dozen smaller data sets, D1, . . . , DK . Then, we ran the

MCMC estimation on each data set, Dk, and performed a post-inference resampling step

to sequentially merge the K posterior densities.

3 Data

The empirical analysis is based on several administrative data sources from Austria. In

the Austrian Birth Register, we select all firstborn single births from the birth cohorts

1979 through 1983. Of these, we focus on mothers between 18 and 40 years of age at the

time of their first birth, and who had at least one subsequent birth. This implies that

the mothers in our sample belong to the birth cohorts from 1939 through 1965. Based

on the characteristics of the second birth, we define our IVs, twin2 and same sex. Here,

we exclude the rare cases of higher-order multiples. To generate our treatment variable,

famsize, we add all the children born until 2007. Given that the youngest mother

in our sample was 42 years old in 2007, this variable can be interpreted as completed

fertility. Figure 2 shows the distribution of the firstborns’ year of birth, completed fertility

size, mothers’ age at first birth, and the years between first and second birth (birth

spacing). Information on the covariates is also captured from the birth register. Finally, to

explore potentially heterogeneous effects across households with a varying socioeconomic

12



status, we use available information on mothers’ educational attainment. Using a personal

identifier, the data from the birth register are matched to other data sources comprising

information on different firstborns’ outcomes.13

Educational outcome: We do not have complete information on firstborns’ educational

attainment. However, a link to the database of the Austrian Federal Ministry of Labour,

Social Affairs and Consumer Protection, which includes information on family allowances,

school and study grants, or other types of public social benefits (until 2005), allows us to

infer whether firstborns were ever enrolled in university. Given the Austrian educational

system, this is an informative proxy for educational attainment, and can be interpreted

as the completion of (at least) the so-called high track.14 The binary outcome variable,

“college attendance,” has a mean of about 0.3.

Labor market outcomes : To evaluate firstborns’ labor market performance, we use

the Austrian Social Security Database (ASSD). This is an administrative record used to

verify pension claims for the universe of Austrian workers. Here, we observe firstborns’

employment history (including basic employer information), unemployment, and various

other qualifications on a daily basis. Information on earnings is provided per year and per

employer. The limitations of the data are top-coded wages and the lack of information

on working hours (Zweimüller et al., 2009). For our analysis, we evaluate employment,

occupation, and wages. All outcome variables are measured in the last quarter of the

year 2011, which is when individuals are between 28 and 32 years old. At this time, 80

percent of the firstborns are employed (71 percent as white-collar workers and 29 percent

as blue-collar worker). Their average daily wage is about e 84.

Health outcomes: Health outcomes are only available for the sub-population of all pri-

vate sector employees and their dependents in the province of Upper Austria.15 We have

access to the database of the Upper Austrian Sickness Fund16, which includes detailed

information on healthcare service utilization in the outpatient sector (i.e., medical atten-

dance and drug use) and some inpatient sector information, such as the number of days of

13This means that, in contrast to other papers (Vere, 2011), we have exact information on multiple
births. Therefore, we do not have to infer this information from the year of birth. Thus, the matched
information from the Austrian Birth Register eliminates problems of measurement error.

14The Austrian educational system is characterized by two distinguishing features: early tracking and a
widespread dual education system. Students are already allocated in Grade five (i.e., at the age of 10) to
one of two different educational tracks. The lower secondary schools (low track) comprise Grades 5 to 8,
provide basic general education and prepare students for vocational education either in an intermediate
vocational/technical school or within the dual education system. The higher secondary schools (high
track) comprise a first-stage (Grades 5 to 8) and second stage (Grades 9 to 12), provide advanced general
education, and conclude with a university entrance exam. The majority of the students (about 72 percent)
complete the low track, and only about 30 percent complete the high track.

15Upper Austria is one of nine provinces in Austria and comprises about one sixth of the Austrian
population and work force.

16In Austria, sickness funds cannot be freely chosen by the insured. Membership is mandatory, and the
assignment of employees to a particular fund depends on the location of the employer and on the type of
occupation. The more than one million fund members represent approximately 75 percent of the Upper
Austrian population.
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hospitalization and the Sickness Fund’s financial contribution for a patient’s hospital stay.

For instance, we are able to observe each single doctor visit and each drug prescription,

together with the exact date of service utilization. To evaluate health, we construct the

following annual outcome variables: (i) total health expenditure17; (ii) expenditure on

outpatient medical attendance (at general practitioners (GPs) and resident medical spe-

cialists); (iii) expenditure on medical drugs; and (iv) days of hospitalization. Obviously,

the degree to which these proxies reflect individual health varies among the variables.

Whereas the number of days of hospitalization and the consumption of medical drugs can

be expected to be highly correlated with a person’s health status, expenditure on out-

patient medical attendance may also capture aspects of preventative care, such as costs

of screening exams. Therefore, higher outpatient expenditures do not necessarily reflect

poorer health. All variables are measured in the year 2009, when firstborns are between

26 and 30 years old. The average firstborn spent about e 584 on total health expenditure

(e 219 on outpatient medical attendance and e 87 on medical drug consumption) and

spent 1.1 days in hospital.

4 Estimation Results

4.1 Human Capital Outcomes

Table 3 summarizes our estimation results with regard to the effect of family size on

firstborns’ educational and labor market outcomes. Column (1) provides the sample mean

of the respective outcome variable. The OLS estimates in column (2) suggest a statistically

significant negative correlation between family size and all human capital outcomes. An

increase of one sibling is associated with a reduced likelihood of college attendance (minus

1.2 percentage points) and a lower employment probability (minus 1.7 percentage points).

Conditional on being employed, an additional sibling reduces the likelihood of white-collar

employment (as compared to blue-collar employment) by 3.3 percentage points and also

has a negative effect on the wage. The latter effect amounts to a reduction in the daily

wage of about e 1.7, a decrease of 2 percent. The estimates obtained by an equivalent

Bayesian method (see column (3)) are quantitatively comparable.

Columns (4) and (7) summarize the 2SLS estimation results for the two different IVs.

With one exception, statistical significance vanishes. While some 2SLS estimates are

within a similar range to comparative OLS estimates, the standard errors are consistently

higher. On average, the 95 percent confidence intervals for the twin IV estimates are

10 times larger than those of the OLS estimation. The corresponding intervals from the

same-sex sibship IV are more than 23 times larger than their OLS counterparts. In the

17Total health expenditures cover outpatient expenditures plus a fixed fee paid by the Sickness Fund
per day spent in hospital.
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case of the twin IV, the point estimates for college attendance and employment are still

negative, while we observe a positive sign for white-collar employment and wage. The

only statistically significant impact of family size is the one on white-collar employment,

based on the same-sex sibship IV. Here, one additional sibling increases the likelihood of

working as a white-collar worker by 9.3 percentage points.

Columns (5) and (8) in Table 3 summarize the estimation results based on the stan-

dard Bayesian IV approach. Below these estimates, we provide highest posterior density

intervals (HPDI). These intervals cover 95 percent of the posterior distribution and are

located in such a way that they provide the shortest interval. For both instruments, we

find comparable results to those of the simple Bayesian estimations, both with respect to

point estimates and confidence intervals. Family size is estimated to have a statistically

significant negative effect on college attendance, white-collar employment, and wages.

However, the effect on employment is positive and also significant.

Both the standard Bayesian and standard Bayesian IV regressions rely on a normality

assumption. However, our data clearly violates the normal distribution assumption of

these models, as we are faced with mainly binary outcomes and a discrete exogeneous

variable. The strength of the semi-parametric approach lies in approximating non-normal

distributions, even complex ones, using a mixture of normal distributions. The large

number of components required for this mixture can be viewed as an indication of the ap-

proximated distribution being very dissimilar to the normal distribution. In order to check

the degree of “non-normality,” we express the distribution of the number of components

using the mixture algorithm required in Table 6. We observe that the smallest number

of components is required for the dichotomous labor outcomes, “college attendance,” “em-

ployment,” and “white-collar,” which are discrete and non-normal. However, they can be

represented by the mixture with relatively few components. The median 4−5 components

suffice to model the binary outcomes’ and correlated first-stage equation’s joint error dis-

tribution. Modeling the corresponding error distribution for the skewed and censored

wages requires more components for the median 7− 8 components.

Columns (6) and (9) in Table 3 summarize the estimation results from the semi-

parametric Bayesian IV approach, which allows for departure from normality. In the

case of the twin IV, statistically significant effects are no longer visible. The size of the

estimates is almost negligible, and with the exception of daily wages, essentially zero. The

HPDIs for the outcomes of college attendance, employment, and white-collar employment

lie in a small range between minus 0.3 and plus 0.1 percentage points. The nonsignificant

estimate for daily wage is e 2.72, which is equivalent to an increase of 3.2 percent. In the

case of the same-sex sibship IV, two estimates are statistically significant and negative

(college attendance and white-collar employment), although their economic significance of

minus 0.35 and plus 0.05 percentage points is negligible. The still nonsignificant coefficient

for daily wages indicates a reduction of 4 percent.
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Figure 3 provides a graphical summary of the IV estimates for two outcomes and com-

pares them to estimates from Angrist et al. (2010), who use data from the 1983 and 1995

Israeli censuses (linked with information from the population registry). The panels depict

the statistically nonsignificant 2SLS estimates, with large confidence intervals, covering

economically important outcome ranges. We argue that these estimates are not precise

enough to reject the trade-off between the quantity and quality of children. The estimates

provided by the standard Bayesian IV approach are substantially more precise and sta-

tistically significant throughout. However, they do not provide a consistent picture. For

example, they suggest that both an unexpected and expected increase in family size have

a negative effect on firstborns’ college attendance, but a positive effect on their employ-

ment probability. While this result is theoretically possible—for instance, an exogenous

increase in family size may prevent a firstborn from picking a college major with a poor

employment outlook—we have to keep the imposed normality assumption in mind. Fi-

nally, the estimates of the semi-parametric Bayesian IV approach consistently show either

statistically and/or economically nonsignificant effects. We argue that these estimation

results are precise enough to credibly reject an (economically relevant) interaction between

the quantity and quality of children with respect to human capital outcomes.

4.2 Health Outcomes

For our health outcomes, we estimate an equivalent set of models, as summarized in

Table 4. Across all models and outcomes, we find consistently nonsignificant effects of

family size.18 In comparison to labor market outcomes, the size of the different confidence

intervals provides a more differentiated picture. For 2SLS, the estimates are again too

imprecise to be informative. The estimations based on the twin IV give confidence inter-

vals are, on average, 6 times larger than those of the OLS estimation. This factor goes

up to 25 in the case of same-sex sibship IV. As an extreme, with a mean of 1.11 days

of hospitalization, the 95 percent confidence interval for the same-sex sibship lies in the

range minus 3 to plus 2.5 days (see column (7)).

The standard Bayesian IV approach provides quite precise estimates. However, the

objection against this method (the violation of the normality assumption) is even more

relevant for health outcomes. Next, we view a more complex scenario than that of the

predominantly binary human capital outcomes. The cardinal health outcome variables

exhibit a skewed distribution, since a large fraction of those insured do not utilize any

medical services and/or drugs in a given year. Consequently, we cannot rely on either the

18The only two exceptions are the estimates obtained from the standard Bayesian regression (column
(3)) for drug expenditure and days spent in hospital. The effect of an increase in family size on days of
hospitalization is negligible, while the negative association with the expenditure on drug consumption is
equivalent to a decrease of 5.1 percent. However, the HDPI regions of the standard Bayesian regression
are based on the assumption of homoscedastic errors, whereas the confidence regions reported by the
OLS technique allow for heteroscedasticity of unknown form.
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point or the variance estimates from the standard Bayesian IV approach, and we consider

the semi-parametric method to provide the most reliable inference results.

Table 6 compares the number of components required by the semi-parametric Bayesian

IV approach. As expected, the number of components required for health outcomes is

substantially higher (with a median between 10 and 21) than the human capital outcomes

(with a median between 4 and 8). The difference shows the difficulty of approximating the

true error distribution. This results in comparable larger HPDIs for our health outcomes

(compared to those of the human capital outcomes). However, for the twin IV, the

performance is still very good. The point estimates are reasonably close to zero, and

the HPDIs are small; at least substantially smaller than those of the corresponding 2SLS

estimations. In the case of the same-sex sibship IV, we increase the endogenous variable’s

variation in the first stage equation by adding a second instrument (girl1, 2 and boy1, 2)

and boosting the variation in the posterior distribution. Thus, even though the complexity

of the mixture, represented by its number of components in Table 6, does not increase, the

variation of the posterior distribution does. Consequently, the precision declines in the

case of the same-sex sibship IV estimates. While the estimates are still more precise than

those of the 2SLS estimation (with a relative order of magnitude of about one half), we

still cannot reject the quantity-quality trade-off or the existence of the hygiene hypothesis.

To put our zero results for health outcomes into perspective, it is worth noting that the

available causal evidence is also insignificant, economically or statistically (see Table 1).

As was mentioned earlier, Hatton and Martin (2010) find a negative effect on children’s

health, although the impact on body weight remains nonsignifcant. Apart from the

fact that the external validity of the study is at least debatable (the sample consists

of predominantly poor families in Britain taken in the interwar period from 1937–1939),

the quantitative effect is only 1 percent, which does not seem to be very high, given the

degree of negative economic selection of families. Similarly, Lundborg et al. (2013) find

a significant positive effect of family size on children’s health, although the quantitative

significance (0.4 percent) is even lower than that of Hatton and Martin (2010). Lastly,

an increase in the number of children by one improves the global health of males at the

age of 18 by 4 percent. This effect is obviously quantitatively important, although the

estimated coefficient is only significant at the 10 percent level.

4.3 Heterogenous Treatment Effects

How family size affects firstborns’ outcomes may depend on specific circumstances. In

particular, the socioeconomic background of families may matter. The degree to which fi-

nancial resources are binding and to which parents are prepared to provide non-pecuniary

support to an additional child is expected to vary across the socioeconomic spectrum.

There is some evidence in the literature (based on 2SLS estimates) that a quantity-quality
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trade-off is significant among families from a lower socioeconomic background, but is non-

existent among families with a higher socioeconomic status (Åslund and Grönqvist, 2010).

If this also applies to our data (and carries over to our preferred estimation model), the

examination of average treatment effects (as presented above) may hide important as-

pects. To identify potential heterogenous treatment effects, we stratify our sample by the

mothers’ educational attainment measured at the time of their second birth. We distin-

guish between mothers with three different levels of educational attainment. Mothers in

the first group have compulsory schooling only (about 27 percent), those in the second

group graduated from the low track (about 58 percent), and those in the third group

graduated from the high track (about 15 percent).

We present the estimation results from these stratified samples for human capital out-

comes only, as the resulting number of observations is sufficient. The semi-parametric

Bayesian IV estimates in columns (6) and (9) in Table 5 do not indicate remarkable differ-

ences between the socioeconomic groups. Similar to the aggregated results, the majority

of effects are still nonsignificant, and the zeroes are precisely estimated. However, we

do observe single statistically significantly negative effects for the group with compulsory

schooling only, as well as the graduates from the low track. For children from mothers

who completed compulsory schooling only, we find a negative effect on the employment

probability of minus 0.5 percentage points in the same-sex sibship specification (column

(9), which is equivalent to a reduction of 0.6 percent. For children from mothers who

graduated from the low track, we observe a negative effect on the likelihood of college

attendance of minus 0.5 percentage points (2 percent) for the twin IV (column (6)), and of

minus 0.2 percentage points in the same-sex sibship IV framework (column (9)). Hence,

the stratified analysis confirms our result that an exogenous increase in family size has

no significant effects on firstborns’ human capital outcomes. If we find single signifi-

cant effects, they are of minor economic importance. However, the detrimental effects

of larger families on educational and labor market success of offspring, in accordance

with the model for the quantity and quality of children, occur in families with a lower

socioeconomic status.

5 Conclusions

In this study, we used a semi-parametric Bayesian IV approach to test the theoretically

proposed interaction between the quantity and the quality of children. We used adminis-

trative data sources from Austria and exploited exogenous variation in family size due to

twin births and preferences for a mixed sibling-sex composition. In contrast to existing

evidence (based on 2SLS), our approach provides precisely estimated effects. By construc-

tion, the Bayesian semi-parametric approach is able to cope well with data that violate

the typical normal distribution assumptions, such as binary, skewed, and censored data,
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all of which occur in our data set. This allows us to credibly conclude that there is no

quantitatively important quantity-quality trade-off of children. The estimated effects on

firstborns’ human capital and health outcomes are either statistically and/or economically

nonsignificant.

How can the absence of this causal link be explained? There are several complementary

explanations. First, the negative effect of reduced resources might be offset by the positive

effects from interaction between siblings. This is what the hygiene hypothesis suggests

for health outcomes. In terms of human capital development, firstborns may benefit from

teaching their younger sibling. Second, parents may manage to keep their investment

in their children constant (as compared to the counterfactual situation) and primarily

reduce their consumption of private goods and leisure. Related literature has shown

that mothers reduce their labor supply as a response to fertility shocks. Consequently,

the total amount of at-home care provided by the mother may even increase for the

firstborns. If maternal childcare is superior to the counterfactual care setting, firstborns

might benefit from this mediating channel. Finally, an increase in family size might only

reduce irrelevant child investment. In other words, the parents may overinvest in their

firstborns in the counterfactual situation.

Naturally, our results have to be interpreted in the light of the specific institutional

setting. We consider Austria to be a representative example of a Central European welfare

state that provides—apart from free healthcare and education—some financial support

for families. Moreover, the average family size in Austria is low, and our results relate

basically to an increase in family size from two to three children. It remains unclear

whether the quantity/quality trade-off would exist in developing countries with (i) a less

pronounced welfare state and (ii) larger families, on average. In any case, it would be

worthwhile to further expand the outcome dimension, and to study, for instance, the effect

of family size on children’s cognitive and character skills. These outcomes have recently

attracted significant attention from economists, as there is growing evidence that these

skills are strong predictors of important long-term outcomes (Heckman and Kautz, 2012,

2013).
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Tables and Figures

Table 1: 2SLS-Estimates of Family Size on Human Capital and Health Out-

comes in the Literature

2SLS Standard 95 percent
Outcome Mean estimate error confidence interval

Angrist et al. (2010)a

Highest grade completed 12.6 0.174 0.166 −0.151 0.499

Years of schooling ≥ 12 0.824 0.03 0.028 −0.025 0.085

Some college (age ≥ 24) 0.291 0.017 0.052 −0.085 0.119

College graduate (age ≥ 24) 0.202 −0.021 0.045 −0.109 0.067

Employment 0.827 −0.005 0.038 −0.079 0.069

Hours worked last week 32.6 −0.97 2.58 −6.03 4.09

Monthly earnings (1995 shekels) 2, 997 −7.7 394.1 −780.1 764.7

Log of earning for full-time workers 8.24 0.082 0.116 −0.145 0.309

Black et al. (2005)b

Years of schooling 12.2 0.038 0.047 −0.054 0.130

Full-time employment (men) 0.71 −0.005 0.013 −0.030 0.020

Full-time employment (women) 0.46 0.021 0.015 −0.008 0.050

Log of earnings (men) 12.55 −0.003 0.02 −0.04 0.04

Log of earnings for full-time workers (men) 12.72 −0.005 0.014 −0.032 0.022

Log of earnings (women) 12.05 0.03 0.026 −0.021 0.081

Log of earnings for full-time workers (women) 12.42 0.015 0.016 −0.016 0.046

Black et al. (2010)b

IQ (stanine scores) 5.2 −0.149 0.052 −0.251 −0.047

Years of schooling ≥ 12 12.3 −0.029 0.015 −0.058 0.000

Åslund and Grönqvist (2010)a

Years of schooling 12.9 0.022 0.048 −0.072 0.116

Grade point average (compulsory school) 51.7 0.844 0.665 −0.459 2.147

Grade point average (secondary school) 51.37 0.969 0.746 −0.493 2.431

Graduated from secondary school 0.92 0.002 0.007 −0.012 0.016

Enrolled in university 0.47 0.005 0.011 −0.017 0.027

Non-employment 0.21 −0.007 0.01 −0.03 0.01

Log of earnings 7.2 0.044 0.03 −0.01 0.10

Cáceres-Delpiano (2006)a

Grade behind cohortc 0.05 0.002 0.003 −0.004 0.008

Attends private school 0.15 −0.012 0.005 −0.022 −0.002

Hatton and Martin (2010)d

Height at eight [in cm] 121.00 −1.20

Lundborg et al. (2013)a

Height of 18 year old males 179.691 1.102 0.360 0.396 1.808

Global health of 18 year old malese −2.35 0.094 0.055 −0.014 0.202

Notes : The table summarizes empirical evidence on the effect of family size on labor market outcomes of the
firstborn child, using multiple second births as an instrument. Sample means, coefficients, and standard errors
are taken from the original articles, and the confidence intervals are calculated based on the estimates. Sample
means correspond to: a firstborn children; b all singleton births; c dummy variable that equals one if the child’s
highest completed grade is lower than the mode of highest grade completed by age in years, quarter of birth
and state, and zero otherwise; d children per family, excluding twins; e indicator variable running from zero
(excellent health) to -12 (lowest health status) based on examinations of individuals to be allowed to do military
training.
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Figure 1: Share of Twins over Time in Austria and Birth Cohorts of Second Births in Sample
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Notes : The upper first graph shows the share of twins at parity one and two over time in Austria. The second
graph shows the cumulative distribution function for the year of second birth for families used to estimate firstborns’
human capital outcomes (N=107,270).
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Figure 2: Distributions of Key Variables
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Notes : These figures are based on the full sample, which is used to estimate firstborns’ human capital outcomes
(N=107, 270) and show the distribution of firstborn’s year of birth (top left), completed family size (top right),
mothers’ age at first birth (bottom left), and years between first and second birth (top right).
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Table 2: First Stage Relationships

(1) (2) (3)

twin 2 0.777
[0.740,0.815]

same sex 0.061
[0.052,0.070]

girl 1,2 0.079
[0.066,0.092]

boy 1,2 0.043
[0.031,0.056]

No. of observations 107,270 106,346 106,346
Mean of dependent var. 2.5 2.5 2.5
F-statistics on weak IV(s)a 1,004.4a / 1,673.2b 178.9a / 178.8b 96.7c

Notes : This table summarizes the least square estimation of the effect of (1) a twin birth at second birth, (2) a same-sex
sibship, and (3) sex-specific same-sex sibship on completed family size (i.e. number of children). Each specification controls
for the firstborn’s year of birth and mother’s age at first and second birth. We consider a 95 percent confidence interval,
based on robust standard errors, allowing for heteroskedasticity of unknown form in the brackets below: a Cragg-Donald F
statistic; b Kleibergen-Paap Wald F statistic; and the c Angrist-Pischke multivariate F Test of excluded IVs. The different
number of observations for the twin and the same-sex sibship IV occur because twin births are excluded from the same sex
specifications.
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Table 3: The Effect of Family Size on Firstborns’ Human Capital Outcomes

Twin IV Same-sex sibship IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Standard Semi-parametric Standard Semi-parametric
Mean OLS Bayesian 2SLS Bayesian IV Bayesian IV 2SLS Bayesian IV Bayesian IV

College attendance 0.29 -0.012 -0.015 -0.031 -0.04 0.0002 0.029 -0.053 -0.0035
[-0.015,-0.009] [-0.017,-0.012] [-0.067,0.004] [-0.046,-0.035] [-0.002,0.001] [-0.055,0.113] [-0.055,-0.051] [-0.004,-0.003]

Employment 0.80 -0.017 -0.015 -0.023 0.009 0.0009 -0.024 0.014 0.0005
[-0.021,-0.014] [-0.017,-0.014] [-0.057,0.011] [0.004,0.014] [-0.002,0.002] [-0.104,0.057] [0.012,0.016] [-0.001,0.002]

White-collar 0.71 -0.033 -0.034 0.003 -0.029 -0.0008 0.093 -0.031 -0.0007
[-0.038,-0.029] [-0.037,-0.032] [-0.038,0.045] [-0.036,-0.023] [-0.003,0.001] [0.001,0.185] [-0.033,-0.028] [-0.001,-0.001]

Wage 83.71 -1.675 -1.827 2.765 -1.45 2.72 3.736 -2.08 -3.34
[-1.993,-1.358] [-2.02,-1.63] [-0.517,6.047] [-1.98,-0.93] [-6.74,11.79] [-3.814,11.285] [-2.29,-1.88] [-10.20,3.04]

Notes : This table summarizes the effects of family size on firstborns’ educational and labor market outcomes. The means of dependent variables are shown in column (1), columns (2) and
(3) show the OLS estimates and Bayesian linear regression results. Columns (4) to (6) show the estimation results for the twin IV using 2SLS, a Standard Bayesian IV, and a semi-parametric
Bayesian IV approach. Columns (7) to (9) show the same for the same-sex sibship IV. Each cell represents the results from a separate regression controlling for a firstborn’s year of birth
and mother’s age at first and second birth. The 95 percent confidence intervals based on robust standard errors, allowing for heteroskedasticity of unknown form, and the 95 percent HPD
intervals for the Bayesian results are shown in brackets. The number of observations for college attendance and employment are 107,270 in columns (1) to (6) and 106,346 in columns (7) to
(9). The white-collar indicator and wage is only available for a subsample of individuals. Here, the respective number of observations is 77,488 (columns (1)-(6)) and 76,836 (columns (7)-(9))
for white-collar and 83,303 (columns (1)-(6)) and 82,606 (columns (7)-(9)) for wage regressions.
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Figure 3: Graphical Comparisons of Different IV-Estimators

Notes : The bar graphs summarize our estimation results for two outcomes based on two different IVs, along with comparable estimates from Angrist
et al. (2010). The top, left panel summarizes the estimates for college attendance using the twin IV, the top right panel summarizes the estimates for
employment using the twin IV, the bottom left panel summarizes the estimates for college attendance using the same-sex sibship IV, and the bottom
right panel summarizes the estimates for employment using the same-sex sibship IV. In each graph, the first bar displays the results obtained from
Angrist et al. (2010), the second bar captures our 2SLS estimate, the third bar captures our standard Bayesian IV estimate, and the fourth bar shows our
semi-parametric Bayesian IV estimate. The whiskers in each bar show the 95 percent confidence intervals or the highest posterior density (HPD) intervals,
in the case of Bayesian estimate.
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Table 4: The Effect of Family Size on Firstborns’ Health Outcomes

Twin IV Same-sex sibship IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Standard Semi-parametric Standard Semi-parametric
Mean OLS Bayesian 2SLS Bayesian IV Bayesian IV 2SLS Bayesian IV Bayesian IV

Total expend. 583.88 -1.802 2.52 -75.435 -0.74 15.72 136.423 2.26 69.93
[-35.315,31.711] [-3.50,8.57] [-226.133,75.264] [-19.02,18.94] [-19.43,51.74] [-607.917,880.762] [-14.41,19.88] [-235.58,329.32]

Med. attendance 218.56 1.365 0.45 4.152 2.41 11.28 91.952 4.70 -26.50
[-3.226,5.957] [-0.51,1.41] [-41.082,49.386] [-7.75,13.11] [-15.94,37.55] [-26.640,210.544] [-0.45,9.56] [-219.81,137.72]

Drug use 86.60 -9.691 -4.45 -16.328 -3.60 2.02 -74.039 -8.98 -0.28
[-19.608,0.227] [-6.67,-2.21] [-71.790,39.134] [-20.56,13.34] [-1.78,5.86] [-354.862,206.784] [-19.92,1.73] [-72.49,60.88]

Days in hospital 1.11 0.034 0.044 -0.125 -0.008 0.00002 -0.301 0.035 -0.024
[-0.094,0.162] [0.015,0.068] [-0.647,0.396] [-0.29,0.28] [-0.01,0.011] [-3.062,2.460] [-0.09,0.17] [-0.10,0.03]

Notes : This table summarizes the effects of family size on firstborns’ health outcomes. The means of the dependent variables are shown in column (1), and columns (2) and (3) show the OLS estimates
and Bayesian linear regression results. Columns (4) to (6) show the estimation results for the twin IV using 2SLS, a Standard Bayesian IV, and a semi-parametric Bayesian IV approach. Columns
(7) to (9) show the same for the same-sex sibship IV. Each cell represents results from a separate regression controlling for firstborn’s year of birth and mother’s age at first and second birth. The 95
percent confidence intervals based on robust standard errors allowing for heteroskedasticity of unknown form and the 95 percent HPD intervals for Bayesian results are shown in brackets. The number
of observations is 17,746 in columns (1) to (6) and 17,577 in columns (7) to (9).
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Table 5: The Effect of Family Size on Firstborns’ Human Capital Outcomes by Mothers’ Educational Attainment

Twin IV Same-sex sibship IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Standard Semi-parametric Standard Semi-parametric
Mean OLS Bayesian 2SLS Bayesian IV Bayesian IV 2SLS Bayesian IV Bayesian IV

Panel A: Compulsory schooling only

College attendance 0.11 -0.009 -0.009 -0.000 -0.013 0.0004 0.028 -0.018 -0.0004
[-0.014,-0.005] [-0.012,-0.006] [-0.054,0.053] [-0.021,-0.008] [-0.001,0.003] [-0.111,0.168] [-0.020,-0.015] [-0.003,0.001]

Employment 0.78 -0.021 -0.020 -0.118 0.024 0.001 -0.055 0.037 -0.005
[-0.027,-0.014] [-0.024,-0.017] [-0.198,-0.038] [0.011,0.040] [-0.004,0.004] [-0.244,0.134] [0.033,0.040] [-0.008,-0.001]

White-collar 0.56 -0.039 -0.022 0.047 0.019 -0.0002 0.180 0.030 0.001
[-0.048,-0.030] [-0.027,-0.016] [-0.052,0.146] [-0.006,0.028] [-0.005,0.005] [-0.068,0.427] [0.024,0.035] [-0.005,0.005]

Wage 78.78 -1.344 -0.165 6.494 3.726 0.294 0.757 4.333 -1.106
[-1.923,-0.765] [-0.995,0.166] [0.371,12.617] [2.748,4.695] [-15.688,15.748] [-14.725,16.239] [4.007,4.662] [-13.721,14.813]

Panel B: Graduates from low track

College attendance 0.25 -0.019 -0.012 -0.035 -0.031 -0.005 -0.004 -0.034 -0.002
[-0.024,-0.014] [-0.015,-0.008] [-0.086,0.016] [-0.039,-0.022] [-0.011,-0.0002] [-0.141,0.134] [-0.037,-0.031] [-0.003,-0.0002]

Employment 0.80 -0.014 -0.018 0.028 0.035 0.0002 -0.044 0.047 0.000
[-0.018,-0.009] [-0.021,-0.015] [-0.019,0.075] [0.027,0.043] [-0.004,0.003] [-0.175,0.088] [0.044,0.050] [-0.003,0.002]

White-collar 0.72 -0.034 -0.014 -0.030 0.020 -0.000 -0.038 0.039 -0.000
[-0.040,-0.027] [-0.018,-0.009] [-0.091,0.030] [0.009,0.031] [-0.003,0.003] [-0.181,0.104] [0.035,0.043] [-0.003,0.003]

Wage 82.90 -1.453 0.234 -1.500 3.513 3.958 3.492 5.746 -2.941
[-1.923,-0.983] [-0.064,0.534] [-6.047,3.047] [2.723,4.348] [-11.018,16.515] [-7.980,14.963] [5.460,6.031] [-15.843,14.375]

Panel C: Graduates from high track

college attendance 0.64 0.003 0.011 -0.012 0.018 -0.001 0.010 0.024 0.000
[-0.008,0.014] [0.004,0.018] [-0.130,0.107] [-0.0001,0.037] [-0.012,0.004] [-0.244,0.264] [0.017,0.031] [-0.005,0.006]

Employment 0.79 -0.017 -0.014 -0.055 0.043 0.000 -0.048 0.054 0.000
[-0.027,-0.007] [-0.021,-0.008] [-0.166,0.055] [0.026,0.060] [-0.005,0.005] [-0.292,0.197] [0.048,0.060] [-0.002,0.006]

White-collar 0.90 -0.009 -0.002 0.017 0.035 -0.007 0.089 0.065 0.000
[-0.019,-0.000] [-0.009,0.004] [-0.074,0.108] [0.017,0.052] [-0.017,0.005] [-0.030,0.209] [0.059,0.072] [-0.003,0.006]

Wage 86.81 -1.527 2.564 5.088 7.314 5.007 14.163 9.345 0.075
[-2.648,-0.406] [1.816,3.314] [-6.516,16.692] [5.304,9.176] [-31.737,36.338] [-8.783,37.109] [8.615,10.083] [-21.705,23.239]

This table summarizes the effects of family size on firstborns’ educational and labor market outcomes by mothers’ educational attainment. The means of the dependent variables are in column
(1), columns (2) and (3) show the OLS estimates and Bayesian linear regression results. Columns (4) to (6) show the estimation results for the twin IV using 2SLS, a Standard Bayesian IV, and
a semi-parametric Bayesian IV approach, and columns (7) to (9) show the same for the same-sex sibship IV. Each cell represents results from a separate regression controlling for firstborn’s year
of birth and mother’s age at first and second birth. The 95 percent confidence intervals based on robust standard errors allowing for heteroskedasticity of unknown form and 95 percent HPD
intervals for Bayesian results are in brackets below.
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Table 6: Number of Components Required by the Semi-Parametric Bayesian IV

Twin IV Same-sex sibship IV

Lower bound Median Upper bound Lower bound Median Upper bound

College attendance 5 5 6 5 5 6
Employment 4 5 5 4 4 6

White-collar 4 5 6 4 4 4
Wage 7 7 8 7 8 8

Total expenditures 18 21 24 17 20 23
Medical attendance 11 11 12 10 10 11
Drug use 18 21 25 12 13 21

Days in hospital 11 13 14 11 12 14

Notes : The table summarizes the distribution of the number of components required by the semi-parametric Bayesian IV model.
The first and fourth column correspond to the lower bound of the corresponding 95 percent HPD interval, the second and fifth
column to the median, and the third and sixth columns to the upper bound of the HPD interval for the twin IV and same-sex
sibship IV, respectively.32
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